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The instantaneous normal mode (INM) approach to liquid state dynamics is presented. INM is put in historical
context, and the underlying physical ideas, including the importance of the potential energy landscape, are
explained. It is shown that INM can be the basis of a general starting point for dynamical calculations in
liquids, and the theoretical developments necessary for future development are indicated. New results are
given for the general INM formalism, as well as for depolarized light scattering, the “Boson peak” in
supercooled liquids, friction on a vibrating bond, nonadiabatic solvent induced transitions of a quantum system
coupled to a liquid, and diffusion in supercooled liquids.

1. History and Introduction

In this article we will discuss the approach to dynamics in
liquids based upon “instantaneous normal modes” (INMs). INM
theories provide a comprehensive point of view with great
intuitive appeal and hold particular promise for supercooled
liquid dynamics, for interpretation of ultrafast optical experi-
ments, and for coupling of molecular internal degrees of freedom
to a solvent bath.
The idea of finding normal modes in liquids is a natural one,

given the success of that concept in solids and given Maxwell’s
suggestion1 that liquids are solid-like at short timest < τM. In
supercooled liquids the Maxwell timeτM increases strongly with
decreasingT, and the appeal of the idea grows as well. Solid-
like theories of liquids have fallen in and out of fashion since
Maxwell, but the thread is continuous. We regard INM as its
current manifestation, strongly influenced by Zwanzig’s2 in-
vestigation in 1967 of the possible existence of normal modes
in liquids. Rahman, Mandell, and McTague3 actually carried
out an INM calculation on amorphous Lennard-Jones (LJ) in
1976. Although the system is not a liquid, it has a finite
diffusion constant, and their work foreshadows many features
of the current formalism: “... the presence of an apparently finite
diffusion constant does not allow such a simple determination
of the density of states. However by constructing the force
constant matrix at any instant of time one can study not only
the spectrum of real eigenvalues but that of the imaginary ones
as well.” Indeed, the INM are4 the eigenfunctions of the force
constant matrix from an “instant of time”. The frequencies are
the square roots of the eigenvalues, and the unaveraged density
of states is

Averaging eq 1.1 yields the INM density of states,〈F(ω)〉.
Positive eigenvalues lead to the usual real frequencies, but the
negative eigenvalues found in liquids give imaginary frequen-
cies. The separate spectra of the real (stable) frequencies,
〈Fs(ω)〉, and of the imaginary (unstable) frequencies,〈Fu(ω)〉,

play key roles in INM calculations. Densities of states for the
unit density, supercooled LJ liquid are shown in Figure 1. We
use reduced units unless stated otherwise, and the contribution
of the Im-ω modes is plotted on the negative real axis,iω f
-ω; 〈Fu(ω)〉 for positiveω means〈Fu(|ω|)〉.
In an atomic harmonic crystal the Fourier transform,f(ω), of

the velocity correlation function,C(t), is determined by the
density of states,F(ω),

Rahman et al. tested3 eq 1.2a, replacingF(ω) with the INM
density of states (g(ω) in their notation) and found excellent
agreement with the simulatedf(ω). By demonstrating a
successful INM calculation ofC(t) for a particular system, their
work held out the prospect of a more generally applicable
formalism. They further remark “... the smaller population of
low frequency modes ing(ω) than inf(ω) is becauseg(ω) does
not monitor all the relaxation processes inherent in this system.”
This statement is also significant. Truly dissipative relaxation
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F(ω) ) ∑δ(ω - ωR) (1.1)

Figure 1. INM density of states vsωτ in supercooled unit density
Lennard-Jones liquid at reduced temperatures,T ) 1.25 (solid line)
andT ) 0.50; τ is natural LJ time, 2.18 ps for Ar. Note decreased
unstable mode lobe at lowerT.

f(ω) ) T F(ω) (1.2a)

C(t) ) T∫dω F(ω) cos(ωt) (1.2b)
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processes must be added in to the INM starting point, an area
of ongoing research.
Equation 1.2, withF(ω) replaced5 by a normalized〈Fs(ω)〉 is

perhaps the simplest INM result and demonstrates both the utility
of, and challenges to be met in, the application of solid state
thinking to liquids. The stable INM density of states vanishes
at zero frequency, whilef(ω)0) equals the self-diffusion
constant,D, the integral ofC(t). Thus, the diffusion constant
is predicted to vanish; furthermore, discarding the Im-ω modes
and correspondingly increasing the area of〈Fs(ω)〉 is unjustified.
These difficulties become less important with decreasing
temperature, sinceD f 0 and the “fraction of unstable modes”,
denotedfu, decreases. When bothD and fu are small, eq 1.2a
can be very accurate,5 as seen in Figure 2.
The significance of the imaginary frequency modes is less

clear than that of the stable modes. LaViolette and Stillinger,6

and Cotterill and Masden,7 suggested that the number of unstable
modes might correlate with fluidity, and indeedD may be
calculated from the imaginary frequency modes. The decrease
in amplitude of〈Fu(ω)〉 with decreasingT shown in Figure 1
mirrors a decreasing fluidity. Figure 3 is a test of the INM
formula8

in LJ atP) 10 kbar, where〈ωu〉 is the averaged unstable mode
frequency. A related formula9 is of comparable accuracy in
supercooled CS2, where, diffusion being a translational phe-
nomenon, the fraction of translational unstable modes must be
used.
To go beyond solid state formulas and qualitative correlations,

a physical picture is essential. Goldstein10 has formulated
supercooled liquid dynamics in terms of the topology, or
landscape, of the many-body potential surface, a viewpoint that
is superbly attuned to INM. The liquid is described by
interrupted harmonic dynamics, with periods of harmonic
oscillation near the local minima (the wells)s“the liquid or
glassy region has, unlike the portion associated with the

crystalline solid, a large number of minima, of varying
depths”sinterrupted by barrier crossings“As temperature is
raised, sufficient thermal energy ... will become available to
allow transitions to take place over potential barriers, even
though they are large compared to the thermal energy.” Weber
and Stillinger11 verified Goldstein’s proposal via computer
simulation; they found that the cold liquid remained in the wells
for relatively long times and obtainedωh, the barrier hopping
rate. Zwanzig12 used this idea to calculate the velocity
correlation function, assuming harmonic dynamics in the wells
and randomization upon barrier crossing; the result is

whereτ ) ωh
-1 is the waiting time of the system in a well and

Fq(ω) is the averaged spectrum of modes from the local minima,
the “quenched normal modes” (QNM). One might suspect a
relation betweenτ and the Maxwell time,τM, a point deserving
further investigation. The QNM, which among other properties
have all realω, are not the INM, but eq 1.4 has now been
applied with both,13,14and here we regard it as an INM formula.
Equation 1.4 yields a finite diffusion constant, even with
Fq(ω)0) ) 0.
Most of the basic ideas behind current INM calculations in

liquids are present in the papers just discussed. The liquid forms
relatively stable local structures (the local minima) which
support harmonic dynamics, the stable INM with spectrum
〈Fs(ω)〉. Structural relaxation corresponds to barrier crossing
to neighbor wells, and introduces dissipation. Imaginary
frequency modes (downward curvature of potential) are observ-
able during barrier crossing only, and thus〈Fu(ω)〉 is a source
of information about barrier crossing. In fact〈Fu(ω)〉 contains
enough information to allow a calculation15 of the barrier
hopping rate and16 the distribution of barriers to diffusion,g(E).
Thus, in a neat closed loop, the unstable modes yield the
damping of the stable modes. Of course the idea that diffusion
requires barrier crossing has a long history of distinguished
practitioners, notably Eyring,17 and is the obvious explanation
for exponentialT-dependence ofD(T). While 〈F(ω)〉 is most
often obtained numerically, analytic theories have been given
by Stratt et al.18 and by Wu and Loring.19

It is an oversimplification to state that all Im-ω modes
correspond to barriers. We proposed15 the existence of a cutoff
ωc such that for|ω| < ωc the modes were unrelated to barrier
crossing. Bembenek and Laird20 verified the existence of a
cutoff by calculating the one-dimensional potential energy
profiles U(q). They showed that for|ω| < ωc the U(q) are
“shoulder (SH) potentials”ssingle-well potentials with inflection
points on the shoulderswhile for |ω| > ωc double-well (DW)
barrier crossing profiles (plus SH contributions) appear. The
cutoff may also be obtained21 with analytical methods. We
recently found that it is symmetric; forω > ωc, Re-ω modes
are single-well (SW) harmonic oscillators, but forω < ωc small
SH contributions appear. ThusharmonicIm and Re frequency
modes vanish and are depleted, respectively, for|ω| < ωc, and
this has very important consequences.
For times that are short compared toτ, barrier crossing may

be ignored and time correlation functions calculated via textbook
use of the stable INM. Unstable INM may also be employed
carefully, although their time dependence is cosh(ωt) which
diverges at long times. From the eigenvectors it is possible to
associate specific dynamical features with specific atomic or
molecular motions. This is the basis of one of the two principal
directions, broadly speaking, of INM theory and has been the
subject of two reviews, by Stratt22 and by Stratt and Maron-

Figure 2. Normalized stable INM density of states (solid line) and
f(ω)/T (f(ω) is transformed velocity correlation) vsωτ in supercooled
LJ liquid, T ) 300 K,P ) 10 kbar.

Figure 3. Prediction of eq 1.3 and simulatedD(T) (solid line) vsT in
supercooled LJ,P ) 10 kbar; units forD are cm2/s× 105.

D(T) ) const〈ωu〉 fu (1.3)

C(t) ) T∫dω Fq(ω) cos(ωt) exp(-t/τ) (1.4)
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celli.23 Many current experiments focus on the ultrafast time
scale, so such theories are directly applicable. Again,τ increases
as T decreases and the “short time” regime expands in
supercooled liquids. Equation 1.2 is an elementary formula of
this type.
The second principal direction is the construction of time

correlation functions accurate at all times, following eq 1.4, with
ωh obtained from〈Fu(ω)〉. Integration leads to INM expressions
for transport coefficients, e.g. the self-diffusion constant. This
approach allows a new explanation15,24,25of the Arrhenius and
stronger-than-ArrheniusT-dependence characteristic of strong
and fragile supercooled liquids. Here the point is not that an
accurate short time approximation is available from〈Fs(ω)〉, but
that〈Fu(ω)〉 provides a sufficiently rich description of transport
via barrier crossing to yield the long time decay,if the cutoff
ωc is properly included. Equations 1.3 and 1.4 belong to this
class of INM result.

2. INM Theory of Time Correlation Functions

2a. General Considerations and Suggestions.We seek a
theory of time correlation functions in which controlled,
physically motivated approximations are generated in terms of
the properties of the INM. Ultimately one would hope for a
formally exact starting point. Two steps are indicated: first,
an arbitrary dynamical variable must be expressed in terms of
INM variables; second, the dynamics of those variables must
be found. The INM themselves are well-defined dynamical
variables. The eigenvectors (R,i;t) and the eigenvaluesεR(t)
are functions, albeit unusually complicated ones, of the positions
ri(t); Roman index denotes both particle number and Cartesian
direction, Greek index denotes normal mode, and summation
over repeated indices is implied. Natural INM position and
velocity variables in atomic liquids are{qR, VR}

and are related to familiar Fourier collective variables by the
replacement (R,i;t) f exp(ik‚ri). If possible we would like to
avoid dealing withqR(t), with its dependence on the absolute
atomic positions which need not be small. More generally the
INM are22 linear combinations of mass-weighted coordinates,
but the mass can be removed from many manipulations by
incorporating it into the definition of reduced units.
Expression of the usual quantities as INM is straightforward

for variables which are generalized velocities (odd functions of
the velocity). Consider first the velocity correlation function.
INM expansion ofVi(t) in terms of theVR(t) yields

Summing overi and dividing by 3N eliminates reference to a
particular particle,

At any instant the (i,R;t) obey the usual ortho-normality
relations,∑(i,R;t) (i,â;t) ) δRâ. In a harmonic crystal these
coefficients are time-independent, d(R,â;t) reduces to (1/3N)δRâ,
C(t) ) (1/3N)∑〈VR(t) VR(0)〉, and 〈VR(t) VR(0)〉 ) T cos(ωRt).
Were we to make all the harmonic approximations in aliquid,
assume that Re-ω results can be applied to Im-ω by simply
substitutingω f iω, and replace the sums over modes by
integrals over the density of states, we would obtain

In liquids d(R,â;t) is more complicated, and the dynamics of
VR(t) are not described by cos or cosh. Nevertheless we have
an expression where the harmonic limit is evident and where
liquid-like behavior enters through INM variables. The har-
monic approximation is a good one in liquids at short times,
and the time expansion of eq 2.5 yields13,14 the exactt2 and t4

terms.
Cho and Stratt26 showed how to apply the above ideas to

any generalized velocity variable dA/dt which is the time
derivative of a generalized positionA (even function of the
velocities). For a configuration close to that at which the INM
were found,A is expanded

where dqR is (eq 2.1)qR with ri(t) replaced byri(t) - ri(0). The
reference to the expansion point drops out of the time derivative

and one can write down the correlation function, having
introduced the derivatives of the physical variable with respect
to the INM.
A fundamental dynamical quantity, the time derivative of the

force on a particle, has a special relation to the INM. From the
harmonic expansion of the potential

Settingt ) δt, δt f 0 and dividing both sides byδt yields

The diffusion constant may be calculated from the integral
of the dF/dt correlation function as well as from the velocity
correlation. That observation has been27 the basis of mode-
coupling theories of tagged particle motion in liquids; dF/dt is
in some ways a better starting point. Equation 2.9 easily yields
an INM expression for the dF/dt correlation. Thus we have
expressed two important correlation functions using INM
variables.
For generalized positions Cho and Stratt26 suggested that the

time correlation function be expressed as the double time integral
of the dA/dt correlation, where dA/dt is a velocity, and that a
purely harmonic INM approximation be applied to dA/dt; thus

whereδA ) A - 〈A〉 and Im-ω modes may be included for
short times with cos(iωt) ) cosh(ωt). The weighted INM
density of states is26

Equation 2.10 has been extensively employed22,23 in the
interpretation of solvation experiments, whereA is the solvation
energy. It is analogous to eq 2.5 in that it assumes harmonic
dynamics and thus has not yet dealt with some of the
complications involved in an INM theory of liquids. Among
other things, it does not decay to zero at long time. Nonetheless
eq 2.10 is, like eq 2.5, accurate at short time. The solvation
studies by Stratt, Maroncelli, and Ladanyi demonstrate22,23,28

qR(t) ) ∑(R,i;t) ri(t) VR(t) ) ∑(R,i;t) Vi(t) (2.1)

C(t) ) 〈Vi(t) Vi(0)〉 ) ∑〈(i,R;t) (i,â;0) VR(t) Vâ(0)〉 (2.2)

C(t) ) ∑〈d(R,â;t) VR(t) Vâ(0)〉 (2.3)

d(R,â;t) ) (1/3N)∑(i,R;t) (i,â;0) (2.4)

C(t) ) T∫dω [〈Fs(ω)〉 cos(ωt) + 〈Fu(ω)〉 cosh(ωt)] (2.5)

A(t) ) A(0)+ ∑(dA/dqR) dqR (2.6)

dA(t)/dt ) ∑(dA/dqR) VR (2.7)

Fi(t) - Fi(0)) ∑(i,R;0) εR(0) [qR(t) - qR(0)] (2.8)

dFi/dt ) ∑(i,R;t) εR VR (2.9)

〈δA(t) δA(0)〉 ) [〈(δA)2〉 -∫dω (T/ω2)〈FA(ω)〉] +

∫dω (T/ω2)〈FA(ω)〉 cos(ωt) (2.10)

〈FA(ω)〉 ) 〈∑(dA/dqR)
2 δ(ω - ωR)〉 (2.11)
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the capability of INM, through the eigenvectors, to isolate the
detailed molecular motions corresponding to particular dynami-
cal features. If the variableA is a short ranged function of its
argument,〈FA(ω)〉 is well-described by a particularly simple
analytic approximation.29

We proposed30 to deal directly with coordinate correlation
functions using eq 2.6 and the physical picture of the system
hopping among the many-body potential wells. Harmonic
dynamics are assumed to hold while the system is in a given
well, and the correlation function is calculated for that well
(denoted by brackets)

where the harmonic result,〈qω
2〉 ) T/ω2, has been employed.

δAw ) Aw - 〈Aw〉 andAw is the average value in the well. The
notable feature of eq 2.12 is the constantδAw2; the harmonic
fluctuations are about a nonzero value in the well, and harmonic
dynamics will not relax this part ofA. However, hopping among
the wells will change and randomizeAw, as well as relaxing
the harmonic oscillations. Averaging over the ensemble of wells
and introducing hopping,

where theharmonic fractionisFH ) ∫dω (T/ω2) 〈FA(ω)〉/〈(δA)2〉.
Equation 2.13 is identical to the Cho-Stratt equation except,
with damping added, it decays to zero at long time. Hopping
may relax different dynamical variables with different rates (τA),
and of course mode andω-independent exponential damping
is only a first approximation. While this heuristic derivation is
not identical to that of Cho and Stratt, it may explain why eq
2.10 does not decay at long time; harmonic dynamics in the
wells cannot, and should not, relax that part of the fluctuations
due to barrier crossing or structural relaxation. In our view
barrier crossing corresponds to the slow “R” process of liquids,
while harmonic dynamics in the wells is a fast “â” process.
Thus INM allows30 a new perspective on the phenomenon of
R/â relaxation.
We have used eq 2.13 to calculate the polarizability correla-

tion function,30 and Rayleigh/Raman scattering,31 in CS2. The
relevant density of states is weighted by the squares of the
derivatives dΠ(2)/dq and dΠ(0)/dq for anisotropic and isotropic
scattering, respectively,τπ is taken to be the second-rank
rotational diffusion time, and we used the normalized〈FsΠ(ω)〉.
The nonharmonic contribution provides a new interpretation of
the narrow line in the anisotropic Rayleigh spectrum. Agree-
ment with simulation is excellent, with separate fast and slow
processes clearly visible at the freezing point, 165 K. The
simulation includes molecular vibrations, which are in reality
quantum mechanical; thus we,31 and others,32 have given a
method for quantum correction of classical INM. In addition
we decompose the densities of states into contributions from
translations parallel and perpendicular to the molecular axis,
and rotations; this is shown for the anisotropic〈FΠ2(ω)〉 in Figure
4. The trans-| piece, away fromω ) 0 resembles the spectrum
in simple liquids, an exponential decay, while the rotations
appear to have more of a distinct peak (all parts of〈FΠ2(ω)〉
vanish at ω ) 0). Interestingly, one empirical fit33 to
experimental data consists of a termω exp(-ω/ω0) plus an
antisymmetrized Gaussian peaked at a finiteω; INM may
provide a physical basis for the fit. Comparison of the

anisotropic and isotropic〈FΠ(ω)〉 yields a frequency-independent
depolarization ratio of 0.69, in agreement with Simon’s value34

of 0.7( 1. INM polarizability calculations on acetonitrile have
been performed35 by Ladanyi and Klein, with an alternative
mode decomposition.
The question of how to obtain INM dynamics remains. Time

correlation functions of the INM variables could be obtained
via approximations to an exact starting point, or via intuitive
modeling. We will now briefly suggest how one might go about
rewriting the laws of motion so that INM approximations could
be systematically constructed, and we will then cover modeling
in more detail.
Mori’s formalism36 is exact for time correlation functions of

an arbitrary set of dynamical variables, and is one of the
cornerstones of dynamical theory in liquids. A microscopic
derivation of hydrodynamics is obtained by choosing the
number, momentum, and energy densities as the set of variables;
it is not unreasonable that use of the INM variables would also
lead to useful results. A more direct route is possible, based
on the expression of dF/dt by INM. The time derivative ofaR
≡ (dVR/dt) contains dF/dt and first and second derivatives of
(i,R;t). Eliminating dFi/dt with eq 2.9 yields closed coupled
equations forVR(t) andaR(t) containing the INM quantities as
time-dependent coefficients

wherec(R,â;t) ) ∑(d(R,i;t)/dt)(i,â;t).
In each eigenanalysis, the modes are ordered byω only, and

it is not immediately obvious which mode at a previous time is
the “ancestor” of a particular contemporary mode. Adiabatic
INM (AINM) may be obtained37 by identifying a mode at time
t as the descendant of the mode att - ∆t, for ∆t f 0, with
which it has the maximum overlap. The frequencies of the
AINM do not cross,37 so modes can simply be tracked by their
ordering inω. AINM may serve as a time-dependent “basis
set”, but note that the existence of an adiabatic basis does not
imply adiabatic dynamics. Energy put into a single AINM at
t ) 0 will find its way into other AINM, with mixing particularly
pronounced at the avoided crossings (AX). Alternate time-
dependent INM are diabatic INM (DINM) which do cross at
the AX of the AINM. Mode following will have to be

Figure 4. Anisotropic polarizability INM density of states vsω (ps-1)
for CS2 at 165 K, decomposed into distinct physical components.
Translation parallel to the molecular axis (solid line), perpendicular
translation (heavy dashes), and rotations (light dashes) are represented.

dVR(t)/dt ) aR(t) (2.14)

daR(t)/dt ) ∑[εâ(t) δRâ + ∑(d2(R,i;t)/dt2)(i,â;t) -

2∑c(R,γ;t) c(γ,â;t)] Vâ(t) + 2∑c(R,â;t) aâ(t) (2.15)

[δA(t) δA(0)] ) δAw
2 +∫dω (T/ω2) Fw

A(ω) cos(ωt)
(2.12)

〈δA(t) δA(0)〉/〈(δA)2〉 )

[(1 - FH) + FH∫dω (T/ω2) 〈FA(ω)〉 cos(ωt)/

(∫dω (T/ω2) 〈FA(ω)〉)] exp(-t/τA) (2.13)
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incorporated into any INM formalism. Solving these equations
is not a simple matter; they are nothing but a rewriting of
Newton’s equations. However they have a transparent harmonic
oscillator limit when all the INM coefficients are time-
independent. It should be possible to find perturbative solutions
when the time derivatives are small. Equations 2.14 and 2.15
could form the beginning of systematic INM theory.
2b. Modeling of Correlation Functions: The Velocity

Correlation. Consideration of the velocity correlation function
illustrates the diversity of ideas arising from a very simple INM
exercise. Equation 2.3 suggests that the time-dependent eigen-
vectors are the source of the damping of the INM, so we write

where〈VR(t) VR(0)〉 ) TC(t;R). The first equality is ourdefinition
of a mode-dependent damping factor, d(t;R). The second is an
approximation obtained from eq 2.2 by factorizing the average,
dropping theR * â terms and averaging over the equivalent
atoms; d(t;R) is then given by the eigenvector correlation
function. The velocity correlationC(t) may be constructed from
the velocity correlation functions of individual modes and a
function describing the lifetime of modeR, d(t;R); the sum
contains the imaginary frequency modes.
It is appealing that the mode lifetime be given by the

eigenvector correlation. If12 modes are randomized when the
system hops to a neighbor potential well, it makes sense that
the eigenvectors in the new well are decorrelated from the
original vectors. However, one must be very careful ap-
proximating eq 2.2. At AX the AINM exchange identity,
leading to a rapid decay of the eigenvector correlation function.
The modes have simply been relabeled andC(t) has not decayed,
but this is not handled properly in the diagonal/factorization
approximation. Thus the approximate eq 2.16 is expected to
be innacurate for AINM, although it will be worth trying with
the DINM which do cross and lack the peculiar randomization
at avoided crossings of the AINM. Knowledge of the time
evolution of the eigenvectors, over and above their relevance
to eq 2.16, will help develop and verify the underlying INM
ideas of harmonic oscillation, hopping, and randomization.
Were we to (1) replace d(t;R) with exp(-t/τ), a mode-

independent decay, (2) discard the imaginary frequencies, and
(3) assume thatC(t;R) has the simple harmonic form, cos(ωR(t)0)
t), we would have something very close to eq 1.4. Extensions
of the theory are possible in all three directions. Equation 2.16
explicitly contains mode-dependent damping as well as a
prescription for inclusion of the imaginary frequency modes.
Furthermore, C(t;R) need not equal cos(ωR(t)0)t) or
cosh(ωR(t)0)t). The frequency of a mode may wander in time;
such wandering causes motional narrowing,38 a well-known
phenomenon in vibrational spectroscopy, which has not previ-
ously been incorporated into intermolecular dynamics.
We first consider the case of fixedωR and examine what

can be done with points (1) and (2); thus,

The presence of imaginary frequency modes is significant for
the development of INM theory. Because the cosh grows
exponentially at long times, direct contributions of Im-ω modes
have been limited to short time so far, the exception being a
calculation39 of friction where a short lifetime “tames” their

contribution. Similarly, in eq 2.17, decay of du(t;ω) can cause
the unstable contribution to be well-behaved. The case for
inclusion of unstable modes is compelling because13 eq 2.17
then yields the correct time expansion tot4 if the leading term
in the time expansion of d(t;ω) is t6 or higher. This is an
unusually flat function at short time, and it will be very
interesting to see how d(t;ω) finally turns out. Recall also that
in eq 2.13 we suggested exponential damping for a coordinate
correlation function, but only as a first approximation. The
undamped eq 2.13 is exact tot2, so the damping must have a
leading term oft4. Apparently the damping functions describe
purely slow processes; if damping is due to rotation, it is the
long time part of rotation, not fast librations.
Analytical methods may be used to obtain the damping. In

ref 15 we used〈Fu(ω)〉 to calculate anω-independent averaged
exponential decay rate,ωh, for the stable modes. That rate was
an average over barriers with all different frequencies. If a
barrier with a givenω connects to a stable coordinate with about
the sameω in the adjoining well,40 the barriers atω could be
used to damp the stable modes atω for ω-dependent damping.
A decay time for the unstable modes should be the lifetime,τu,
of the system on a barrier. In the simplest one-dimensional
model,τ/τu ) Ps/Pu ) fs/fu ) (1 - fu)/fu, wherePs andPu are
the probabilities of being in a well and on a barrier. Vijay-
adamodar and Nitzan proposed40 anω-dependent version

and obtained good results for diffusion in normal liquid, unit
density LJ with the Zwanzig theory. It will not be difficult15

to treat multidimensional barriers. An exponential decay is not
desirable, but these are the first steps to a theory of d(t;ω).
Fourkas et al. have proposed41 a novelω-dependent lifetime in
a quantum INM interpretation of their RIKES experiments.
The INM, while found with a harmonic analysis, may not

display harmonic dynamics. We consider two manifestations
of this possibility. Firstly20,21 for |ω| < ωc the Im-ω modes
are “shoulder modes”, and the Re-ω modes have a shoulder
contribution; it is unlikely that the harmonic time dependences,
cos or cosh, apply. For a harmonic INM theory it is plau-
sible15,25 to simply put a lower cutoff on the integrals in eq
2.17, or better, use20 densities of SW and DW modes.
We will then be calculating a particular INMcontributionto

a time correlation function; what is the remainder? The
dynamics of SH modes are bound up with the question of the
relation of INM to hydrodynamics, which governs the largest
length, longest time, decay in liquids. Hydrodynamic modes
might be expected to appear as damped, delocalized “phonons”
in INM calculations. INM phonons have not been found,
although there exists42 some evidence of large scale INM
cooperativity. It is possible, then, that the SW and DW INM
are local modes in liquids, which must be supplemented by the
hydrodynamic modes at|ω| < ωc for a complete description.
We have pursued21,24 Bucheneau’s suggestion43 that the INM
could be the liquid version of the “soft potential modes” used43

in the theory of glasses. The SH modes may be the INM
connection to hydrodynamics. Both〈Fs(ω)〉 and〈Fu(ω)〉 are∼ω
at lowω, which we have argued24 is a possible consequence of
long ranged disorder. It could also be said that the linear
behavior is a consequence of the SH modes, thus linking them
to long ranged excitations. Completing the SW/DW description
with hydrodynamics could yield an INM velocity correlation
with the correct “long time tails”.44

INM time correlation functions are very sensitive to a lower
cutoff. The Boson peak45-48 is a low-ω peak seen in light and
neutron scattering in supercooled liquids. At times before

C(t) ≡ T∑d(t;R) C(t;R) ≈
T∑[(1/3N)∑〈(i,R;t)(i,R;0)〉] C(t;R) (2.16)

C(t) ) T [∫dω 〈Fs(ω)〉 ds(t;ω) cos(ωt) +

∫dω 〈Fu(ω)〉 du(t;ω) cosh(ωt)] (2.17)

exp(-âE(ω)) ≈ τu (ω)/τ(ω) ) 〈Fu(ω)〉/〈Fs(ω)〉 (2.18)
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diffusion sets in, the mean square displacement,〈δx2(t)〉, rises
from zero to a plateau. The strength of the Boson peak has
been related45,46 to the amplitude of an initial overshoot of the
plateau by〈δx2(t)〉. Figure 5 shows〈δx2(t)〉 for unit density LJ
at the glass transition as a function of cutoff. For no cutoff
there is no overshoot; forωc ) 5, our15 rough estimate, there is
a marked overshoot. We are not saying that LJ has a Boson
peak, only demonstrating the role of a cutoff.We predict that
the strength of the Boson peak correlates withωc. Note also
that INM correlation functions of coordinates are written as
frequency integrals with integrands containing the factorT/ω2,
the harmonic formula for〈qω

2〉. Since〈F(ω)〉 ≈ ω, ω f 0, a
badly behaved integrand can result, a difficulty which is
removed by a cutoff. It will also be valuable to obtain the true
behavior of〈qω

2〉 for nonharmonic INM.
Because we have already15,24,25correlated theT-dependence

of relaxation times withωc, structural relaxation and the48

“mesoscopic” (intermediate time) dynamics of supercooled
liquids are implicitly interrelated by INM theory in the Boson
peak calculation. Such relations45-48 are a topic of current
interest. Sokolov48 outlines a view of supercooled dynamics
in which there are two contributions to mesoscopic dynamics,
“an anharmonic relaxation-like contribution which is tradition-
ally ascribed to motion in double wells” and “harmonic quasi-
local vibrational excitations, which show up as the low-
frequency so-called Boson peak”; the mesoscopic dynamics,
remarkably, correlates with structural relaxation 10 orders of
magnitude slower. The excitations invoked for mesoscopic
dynamics are explicitly realized as the DW and SW INM,
respectively, and the correlation with structural relaxation is seen
in the INM calculation ofωh from their densities of states.
A second source of nonharmonic dynamics is time-dependent

frequencies. Zwanzig’s picture12 is of harmonic oscillators with
fixed frequencies in one well becoming randomized by hopping.
But if the frequencies fluctuate in a single well, the problem
becomes analogous to calculations38 of spectral lines, where
fluctuating frequencies cause motional narrowing and relaxation
via dynamic dephasing. For time-dependent frequencies

in contrast to cos(ωRt) or cosh(ωRt). Equation 2.19 is the
starting point for the Kubo49 theory of spectral line shapes. It
may be evaluated via simulation, or49 by a cummulant expan-

sion, characterized by the correlation function of the fluctuating
frequency. Combination of eqs 2.19 and 2.16 yields a theory
of the velocity correlation including Im-ω modes,ω-dependent
damping, additional damping from dephasing, and motional
narrowing. We hope that it serves as a framework for new
approaches to dynamics in liquids.
2c. Internal Degrees of Freedom.Molecular vibrations

are often well-described by the harmonic approximation. In
liquids coupling of these modes to the bath is of the essence,
and a harmonic INM description of the bath is ideally suited
for coupling to harmonic intramolecular modes. The bath has
been successfully modeled as50 “Brownian oscillators”; using
the INM to describe the Brownian oscillators could be a valuable
synthesis. While classical theory and simulation may always
be compared, real molecular vibrations are quantum mechanical.
Fortunately, in another INM advantage, harmonic systems are
the easiest to quantum correct.
Schvaneveldt and Loring51 have used the Wu-Loring theory19

to calculate the Fourier transform of the bond velocity correla-
tion function,CV(ω), which is related to the absorption spectrum,
for a diatomic in various solvents. They obtain an INM
expression for the bond friction,Γ(ω). To a first approximation
the line width equalsΓ(ωV)/2, whereωV is the vibrational
frequency. The friction is the Fourier transform of the correla-
tion function of the random force on the bond and has been
calculated52 by Stratt et al. with INM for a rigid bond and by
Schvaneveldt and Loring.51

INM vibrational lines can be31,51,53broader than the true lines.
This, we believe, is a consequence of the absence of motional
narrowing in existing theories. INM automatically includes
inhomogeneous broadening, so competing effects must be
included also. Equation 2.19 contains motional narrowing and
is a promising route to this end. It is also desirable to see how
the competition between motional narrowing and inhomoge-
neous broadening appears from the viewpoint of the friction.
The friction determines the entire line shape, so every physical
effect must have its counterpart therein.
Equation 2.13 is applicable to the time-dependent friction,

with “A” ) F*, the random force on the bond; random means
projected orthogonal to the bond coordinate. Considering a
single molecule in solution, evaluation of〈FF*(ω)〉, the “random
force density of states”, is all that is required. For a rigid bond,
F ) F*, the only modes are bath modes, and good results are
obtained52 for the “intermolecular” friction.
A vibrating diatomic, e.g. also has a “system mode”, denoted

ν, which is the bond stretching in an isolated molecule but which
includes coupling to the bath in the liquid. The bond coordinate
is not an INM in the liquid; it approaches an INM when the
vibrational frequencyωV is much larger than the highest
intermolecular frequency (weak coupling), and it is a strongly
coupled linear combination of several INM whenωV lies within
the continuum of intermolecular modes (strong coupling). The
system mode survives the projection orthogonal to the bond in
F* to the extent that it is coupled to the bath. The orthogonality
of the INM make taking the projection particularly easy, and
we find,54 for a given configuration in the weak coupling limit,

where (b,R) is shorthand for the projection of bath modeR on
the bond,ε ) [(b,ν)-2 - 1] is54 a small coupling parameter,
andFa is the anharmonic part of the intramolecular potential.
If the bond is identical to the system mode (zero coupling),
(b|ν) ) 1 andε ) 0. The anharmonic force appears because

Figure 5. Mean square displacement,〈x2(t)〉 vs t (LJ units) at
intermediate time for supercooled LJ liquid just above the glass
transition with no cutoff (solid line),ωc ) 2 (heavy dashes), andωc )
5 (light dashes).

C(t;R) ) 〈cos[∫dt′ Re(ωR(t′))] cosh[∫dt′ Im(ωR(t′))]〉
(2.19)

F* ) -ων
2∑(b,R) qR - ων

2
ε qν + Fa (2.20)
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the Mori projection removes only the harmonic intramolecular
contribution.
The first term on the right hand side of eq 2.20 contains

energy relaxation from harmonic coupling to the bath; it is
restricted to intermolecular frequencies and makes essentially
no contribution to the line width ifωV is outside the continuum.
The second term might give inhomogeneous broadening. Since
it is proportional to the system mode its contribution toΓ(ω) is
always centered aroundωV, and it always contributes toΓ(ωV).
The anharmonic force broadens the line because a bond with
an anharmonic potential samples a distribution ofω. An INM
description of an anharmonic force would require higher order
expansions in theq. There is, however, a good argument for
ignoringFa altogether. A quantum anharmonic oscillator still
has just a single ground state and a single first excited state. If
T is low enough that only the 0f 1 transition is observed,
there exists a single quantum frequency. The classical distribu-
tion of frequencies, and the corresponding presence ofFa in
F*, may56 be regarded as classical artifacts.
Now consider damping of the INM friction time correlation

function. Damping will broaden the system mode peak inΓ(ω)
and reduce its amplitude atω ≈ ωV, reducing the line width.
Thus, the undamped system mode represents the full inhomo-
geneous broadening, and damping could introduce the compet-
ing effect of motional narrowing. Damping of the bath modes
will also change the energy relaxation contribution toΓ(ω). In
sum, the competing physical contributions to vibrational relax-
ation are visible in the INM friction.
More generally, time-dependent perturbation theory may be

set up with INM ideas. The Hamiltonian for a solute is written
as a sum of a molecular part, which contains the kinetic energy
operator(s), and a solute-solvent interaction,H ) Hmol +
V(R,{r}), whereRdenotes the solute internal coordinate(s) and
{r} the solvent coordinates. The interactionV is expanded about
the instantaneous configuration

and we writeH0 ) Hmol + V(R,{r0}), H′(t) ) ∑(∂V(R,{r})/
∂qR)0 qR(t). If Hmol describes a two-level system, we can use
perturbation theory for the transition rateR of solvent-induced
level hopping between the eigenstates ofH0 in a given well,
average the quantum harmonic (brackets)q correlations, and
finally take a configuration average (angled brackets)

where〈F(10)(ω)〉 is a quantum mechanical weighted density of
states with the contribution of each modeq weighted by

and we use the Dirac notation for the initial (|0>) and final
(|1>) states. Note thatω10 is within the average; the level
spacing depends on the configuration sinceH0 containsV(R,{r0}).
Equations 2.22 and 2.23 are applicable to nonadiabatic state
hopping of electrons in liquids,57 or might be applied directly
to vibrational relaxation.
2d. Unstable Modes, Barrier Crossing, and Relaxation.

The Im-ω density of states contains information about the
barriers to diffusion which has formerly been unaccessible. A
simple model15 yields

wherenV(ω) is the configuration-space volume weighted density
of barriers andG(ω,T) ≡ 〈exp(-âE)〉(ω) is the aVeraged
Boltzmann factorat ω. The parameters areR, number of
coordinates with downward curvature at a barrier top;z, number
of atoms in a cooperative58 region (localization of INM);s,
number of barriers connected to a minimum;m, number of
minima connected to a barrier. In short,〈Fu(ω,T)〉 depends upon
the topologysvia nV(ω) and the parameterssand upon the
probability that the system has the thermal energy to visit a
barrier atω, governed byG(ω,T). The averaged Boltzmann
factor is the most interesting part of〈Fu(ω,T)〉 and is our INM
“window” on the potential energy landscape.
Consider the averaged hopping rate,ωh. Given an expression,

e.g. transition state theory (TST), for the rate of crossing a
specific barrier, it is necessary to perform an average over all
possible escape routes from a well. If this average is organized
by contributions from barriers with differentω, anω-integral
results whose integrand contains the same quantities as those
appearing inS(ω,T). Thed ) 1 TST rate iskTST ) 1/(2π) (ω/
ωs) exp(-âE), whereωs is the frequency at the minimum. The
exponential inkTST, averaged over the distribution of heights
of barriers withω, is G(ω,T). Extending TST tod > 1 and
completing the average we obtain15

everything in eq 2.25 except the parameterm is available from
〈Fu(ω,T)〉. It may be possible, as mentioned earlier, to relate
the integrand of eq 2.25 to anω-dependent decay rate, leading
to better approximations to time correlation functions. One
signature of supercooled liquids is45,59the stretched exponential
decay of correlation functions,C(t) ) exp[-(t/τ)â], which is
thought59 to arise from a distribution of decay times. If that
distribution corresponds to the distribution of barrier curvatures,
INM could yield a theory of the stretched exponential.
We have determined15 the ω,T-dependence of〈Fu(ω,T)〉 in

unit density supercooled LJ for 1.25> T > 0.42 (meltingTM
≈ 1.8)

and c ) 0.000 20. The exponential in eq 2.26 is, within a
multiplicative constant, the averaged Boltzmann factor. Using
eqs 1.4, 2.25, and 2.26 and taking theωh f 0 limit, appropriate
for deeply supercooled systems, yields

For the simplest case ofd ) 1 barriers,m) 2, the resulting15

D(T) is shown, along with simulation data, in Figure 6. We
have, with no adjustable parameters, a quantitatively accurate
theory forD in supercooled liquids, a theory of a completely
new type.
One of the most important issues in supercooled liquids

is10,17,45,48,60the microscopic origin of the ubiquitous “activated”
exponential temperature-dependence of transport coefficients
and relaxation times. Liquids whose exponentialT-dependence
follows an Arrhenius exp(-E/T) law all the way down to the
glass transition atTG have been named45 “strong” liquids, while
liquids which show a transition from Arrhenius to strongerT-
dependence are “fragile” We have just calculated aD(T) which
is power law, no activated behavior at all. However the power
law has arisen from anω-integral of a density of states which,

ωh ) m/(2π)∫dω ω S(ω,T) )

m[(R/3z) - fu]
-1∫dω ω〈Fu(ω,T)〉 (2.25)

〈Fu(ω,T)〉 ) a(T) ω exp(-cω4/T2) (2.26)

D/T) 0.0068mT3/2 (2.27)

V(R,{r}) ) V(R,{r0}) + ∑(∂V(R,{r})/∂qR)
0 qR(t) (2.21)

R) p-2〈F(10)(ω10) [q
2](ω10)〉 (2.22)

Wq(10)) 〈1|(∂V(R,{r})/∂q)0|0〉2 (2.23)

〈Fu(ω,T)〉 ) (R/3z) S(ω,T) [1 +∫dωS(ω,T)]-1 (2.24a)

S(ω,T) ) (s/m) nV(ω) G(ω,T) (2.24b)
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at a givenω, has one of the principal stronger-than-Arrhenius
forms, the Zwanzig-Bassler61 (ZB) exp(-E2/T2), with E(ω) )
c1/2 ω2.
This observation leads to an INM explanation of activated

behavior. Relaxation arises as a sum of contributions from a
distribution of barriers, organized according toω. Nothing can
be understoodwithout consideration of the distribution of barrier
heights; fluctuations are large, and replacingE with 〈E〉 will
lead toqualitatiVely incorrect results. A single barrier gives
Arrhenius dependence, but such behavior integrated over a
smooth distribution of barrier heights easily collapses to a power
law. What is required in the distribution so that activated
behavior survives? A sharply peaked distribution would suffice,
but more likely, we think, is one with alower cutoffsanEmin
below which the distribution of barriers falls off sharply. Since
E≈ ω2, the energy and frequency cutoffs are related. Equation
2.25 should contain the lower frequency cutoff, including only
DW modes and leading to the expression15

i.e. INM-derived ZB behavior. At the lowest temperatures in
Figure 6 the data fall below the no-cutoff theory; eq 2.28 fits
those points withωc ) 4.54. Physically, a lower cutoff is
required because otherwise, at anyT, there exist enough barriers
with E< Twhich can be crossed without activation. Activation
energies in Arrhenius or ZB expressions are representative of
Emin, not of the average barrier energy.
It has become apparent25,40 that 〈Fu(ω,T)〉 changes from ZB

to an Arrhenius exp(-c′ω2/T) law at a crossover temperature
TFl > TG, and repetition of the calculation which led to eq 2.28
with a more complete form of〈Fu(ω,T)〉 must yield a self-
diffusion constant with a crossover. The consequent INM-based
description of strong and fragile liquids is, we think, one of the
most exciting recent developments. The physically distinct
contributions to〈Fu(ω,T)〉 are neatly expressed25 in the form,
suitable for fitting a broad temperature range,

wherex∞(ω) determinesnV(ω) and-xG is the logarithm of the
averaged Boltzmann factor. In unit density LJ a very good fit
for 10> T > 0.42 is obtained withxG(ω,T) ) (Ω)a3(T), where
Ω is the scaled frequency,Ω ) a2ω/T1/2 anda2 is a constant;
a3(T) goes from>4 at the glass transition to 2 atT . TFl. The
resulting expression forD is

whereTmin ) a22 ωc
2, a microscopically motivated INM formula

capable of describing strong or fragile liquids.
The parameters, and their significance, are as follows. If

energy barrier fluctuations are negligible,G(ω,T) )
exp(-â〈E(ω)〉), and withE ≈ ω2 we conclude that Arrhenius
corresponds to small fluctuations. Physically, forT . TFl the
potential surface isuniformly rough(small fluctuations) while
for T , TFl it is nonuniformly rough, in accord with the ideas
of Stillinger.60 A second crossover temperature,Tmin, arises
through the requirement (Tmin/T) g 1 for the visibility of any
exponentialT-dependence;25,62 in our unitsTmin ) Emin, the
energy at which the available barriers begin to vanish. ForT
. Tmin, D(T) is power law. Mode-coupling theory62 predicts a
crossover from power law to exponentialT-dependence at a
temperatureTx, but the physical pictures seem different; the
viscosity diverges atTx in early versions of mode coupling, while

our crossover is not associated with a “dynamic critical point”.
Relaxation vsT in a supercooled liquid may be represented as
a straight line in the (TFl/T), (Tmin/T) plane, terminating at the
glass transition. The plane is divided into four regions by the
two crossover conditions; Figure 7 shows25 unit density LJ,P
) 1 atmo-terphenyl (OTP) and a generic strong liquid. Strength
(inverse fragility) is seen to follow from a largeTmin; thus we
predict that strong liquids have largeωc. Sokolov48 finds that
a strong liquid has a relatively large contribution of harmonic
vs double-well excitations. Another INM indicator of strength
is then the ratio,S) fswtr/fdwtr, where tr indicates translation.
Nondirectional, van der Waals bonding is expected45 to correlate
with fragility, so LJ should be the ultimate fragile liquid. How
can this be so for a substance with a power lawD(T) in almost
the entire supercooled range? Figure 7 shows that LJ has an
enormous range of nonuniform roughness, but a small range of
exponentialT-dependence due to a smallTmin. The fundamental
connection is between the intermolecular interactions and the
landscape, but the landscape does not manifest itself inD(T) if
T > Tmin.
INM provides routes to the distribution of energy barriers,

g(E), from 〈Fu(ω,T)〉. The inverse Laplace transform ofG(ω,T)
with respect toâ should giveg(E,ω), the distribution for a given
ω, but the calculation is problematic in supercooled liquids
because the inverse transform of a Gaussian (eq 2.26) does not
exist. The integral equations15,16 for g(E) have not yet been

D/T) 0.0068mT3/2exp(-cωc
4/T2) (2.28)

-ln(〈Fu(ω,T)〉/ω) ) a1(T) + x∞(ω) + xG(ω,T) (2.29)

D(T) ≈ exp-[(Tmin/T)
a3(T)/2] (activated behavior only)

(2.30)

Figure 6. Prediction of eq 2.27 and simulatedD(T)/T (diamonds) in
supercooled LJ; units forD areσ2/τ.

Figure 7. Schematic classification ofT-dependent dynamics showing
unit density LJ, normal OTP, and a generic strong liquid.
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applied recognizing the importance of the cutoff, and it will be
interesting to see howg(E) behaves at lowE when calculated
from the DW density20 of states. Recent discussions63 of the
breakdown of the Stokes-Einstein law just aboveTG invoke
fluctuations in barrier heights, associated with spatial hetero-
geneity, as the mechanism. If63 the shear viscosityη depends
upon the time, not the rate, for barrier crossing then

and the right hand side can be calculated fromg(E). To
conclude this section, we believe that the distribution of energy
barriers, organized according to imaginary frequency, is the key
to bothω-dependent damping of INM correlation functions and
to many properties of supercooled liquids. Analysis of〈Fu(ω,T)〉,
or better, of the double-well〈FDW(ω,T)〉, is the way to obtain
that barrier information.

3. Summary

This article has, we hope, given an indication of the versatility
and power of the INM approach to liquid state dynamics. In
closing, let us consider why INM should make any sense at
all; obviously, liquids are not harmonic. The theories described
above, however, are not harmonic either. Even the dynamically
harmonic eq 2.5 uses〈Fu(ω,T)〉 calculated from the true potential.
All we ask of that zero-order description is that it hold for short
times, typically a few hundred femtoseconds, and indeed it
produces exact time expansions tot4. “Short” becomes longer
asT decreases, and many optical experiments explicitly focus
on the femtosecond regime, but our goal isnot to make a
harmonic approximation and hope for the best. It is to use the
harmonic zero-order approximation as a rich and flexible starting
point for a comprehensive theory of dynamics in liquids.
The required ingredients are numerous, but at the top of the

current list are theω-dependent INM relaxation times. With
these included the theory is not harmonic at all, since relaxation
arises from barrier crossing, from moving out of the harmonic
well. It is a great strength that the Im-ω modes yield the
relaxation times. At first view, one might have thought that
the presence of unstable modes would be a knotty problem,
but the opposite is true. Not only can they, properly understood,
make well-behaved contributions to time correlation functions,
but through the averaged Boltzmann factor they provide detailed
information about the potential energy landscape.
Considerable progress in the theory of simple liquids has

resulted from the idea64 that hard spheres provide a good
reference system. The INM approach may be regarded as
arising from a different reference system, the harmonic solid.
Theories with different starting points have different strengths
and weaknesses, and the strengths of the harmonic reference
are at short times and in supercooled liquids. In contrast, hard
spheres exhibit spurious odd terms in the time expansion of
correlation functions, and the discussion of an energy landscape
which has been so fruitful for supercooled liquids is impossible
with a hard sphere potential.
Harmonic reference theories have a distinguished history, and

it is now possible to fill in some crucial pieces missing from
earlier work, such as the distribution of barrier heights, and
construct a theory with true predictive power. To quote
Goldstein10 “... the theory as formulated by Eyring is an
approximate one, based on certain assumptions as to the details
of the motion of state points on potential energy surfaces that
are as yet neither theoretically derived nor experimentally
proved”, and “... in whatever rigorous theory of kinetics we
will someday have, processes limited by a high potential barrier
will share some common simplifications of approach, and the

description will not be terribly different from transition state
theory.” In summarizing current research in INM theory, one
would not go too far wrong by saying that we have, with
contemporary analytic and simulation techniques in hand, been
moving in the directions indicated by the quotations.
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