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Instantaneous Normal Mode Approach to Liquid State Dynamics

T. Keyes*
Department of Chemistry, Boston Warsity, Boston, Massachusetts 02215

Receied: Nawember 5, 1996; In Final Form: February 5, 1997

The instantaneous normal mode (INM) approach to liquid state dynamics is presented. INM is put in historical
context, and the underlying physical ideas, including the importance of the potential energy landscape, are
explained. It is shown that INM can be the basis of a general starting point for dynamical calculations in
liquids, and the theoretical developments necessary for future development are indicated. New results are
given for the general INM formalism, as well as for depolarized light scattering, the “Boson peak” in
supercooled liquids, friction on a vibrating bond, nonadiabatic solvent induced transitions of a quantum system
coupled to a liquid, and diffusion in supercooled liquids.

1. History and Introduction 0.04
In this article we will discuss the approach to dynamics in 0.035 |
liquids based upon “instantaneous normal modes” (INMs). INM
theories provide a comprehensive point of view with great 0.03 - ; 4
intuitive appeal and hold particular promise for supercooled 0025 E

liquid dynamics, for interpretation of ultrafast optical experi- I 4
ments, and for coupling of molecular internal degrees of freedom }
to a solvent bath.

The idea of finding normal modes in liquids is a natural one, 0.0151
given the success of that concept in solids and given Maxwell's

suggestiohthat liquids are solid-like at short timés< ty. In 001 W

supercooled liquids the Maxwell timg, increases strongly with 0.005 | Y

decreasind, and the appeal of the idea grows as well. Solid-

like theories of liquids have fallen in and out of fashion since 0——— TR R T “""‘“go %0
Maxwell, but the thread is continuous. We regard INM as its Wt

current manifestation, strongly influenced by Zwanzigts- Figure 1. INM density of states vsot in supercooled unit density

vestigation in 1967 of the possible existence of normal modes ennard-Jones liquid at reduced temperatufles; 1.25 (solid line)
in liguids. Rahman, Mandell, and McTaduactually carried and T = 0.50; 7 is natural LJ time, 2.18 ps for Ar. Note decreased
out an INM calculation on amorphous Lennard-Jones (LJ) in unstable mode lobe at lowdt
1976. Although the system is not a liquid, it has a finite
diffusion constant, and their work foreshadows many feature
of the current formalism: “... the presence of an apparently finite
diffusion constant does not allow such a simple determination
of the density of states. However by constructing the force
constant matrix at any instant of time one can study not only
the spectrum of real eigenvalues but that of the imaginary ones
as well.” Indeed, the INM arfethe eigenfunctions of the force
constant matrix from an “instant of time”. The frequencies are
g}esfgtlézrg roots of the eigenvalues, and the unaveraged density f(w) =T p(w) (1.2a)
is

s play key roles in INM calculations. Densities of states for the
unit density, supercooled LJ liquid are shown in Figure 1. We
use reduced units unless stated otherwise, and the contribution
of the Imw modes is plotted on the negative real axis,—
—w; [py(w)Ofor positive w meansipy(|w])

In an atomic harmonic crystal the Fourier transfofw,), of
the velocity correlation functionC(t), is determined by the
density of statesp(w),

o) = T~ 0,) (1.1) C(t) =T [ dw p(w) cosft) (1.2b)

. . . Rahman et al. testédeq 1.2a, replacing(w) with the INM
A"e_“’?‘g'”g_ eq 1.1 yields the INM density of state%_s(w)D density of statesg(w) in their notation) and found excellent
Positive eigenvalues lead to the usual real frequencies, but theagreement with the simulate{w). By demonstrating a
negative eigenvalues found in liquids give imaginary frequen- successful INM calculation dZ(t) for a particular system, their
cies. The separate spectra of the real (stable) frequencies '

) ) g work held out the prospect of a more generally applicable
[p(w)U and of the imaginary (unstable) frequencigg(w)L) formalism. They further remark “... the smaller population of

* Correspondence may be addresed to the author via E-mail: keyes@ low frequency modes ig(w) than inf(w) is because(w) does
chem.bu.edu; httpzllcher%/.bu.emyes. + “YE5 ot monitor all the relaxation processes inherent in this system.”
€ Abstract published ilAdvance ACS Abstractddarch 15, 1997. This statement is also significant. Truly dissipative relaxation
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Figure 2. Normalized stable INM density of states (solid line) and
f(w)/IT (f(w) is transformed velocity correlation) vst in supercooled
LJ liquid, T = 300 K, P = 10 kbar.
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Figure 3. Prediction of eq 1.3 and simulat&(T) (solid line) vsT in
supercooled LJP = 10 kbar; units foD are cni/s x 1.
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crystalline solid, a large number of minima, of varying
depths™—interrupted by barrier crossing’/As temperature is
raised, sufficient thermal energy ... will become available to
allow transitions to take place over potential barriers, even
though they are large compared to the thermal energy.” Weber
and Stillinget! verified Goldstein’s proposal via computer
simulation; they found that the cold liquid remained in the wells
for relatively long times and obtained,, the barrier hopping
rate. Zwanzi¢? used this idea to calculate the velocity
correlation function, assuming harmonic dynamics in the wells
and randomization upon barrier crossing; the result is

C(t) =T [dw py(w) cost) exp(~t/r) (1.4)
wherer = wyp1is the waiting time of the system in a well and
pq(w) is the averaged spectrum of modes from the local minima,
the “quenched normal modes” (QNM). One might suspect a
relation between and the Maxwell timery, a point deserving
further investigation. The QNM, which among other properties
have all realw, are not the INM, but eq 1.4 has now been
applied with both314and here we regard it as an INM formula.
Equation 1.4 yields a finite diffusion constant, even with
po(@=0) = 0.

Most of the basic ideas behind current INM calculations in
liquids are present in the papers just discussed. The liquid forms
relatively stable local structures (the local minima) which
support harmonic dynamics, the stable INM with spectrum

processes must be added in to the INM starting point, an arealp{(w)l] Structural relaxation corresponds to barrier crossing

of ongoing research.
Equation 1.2, withp(w) replaced by a normalizedps(w)Cis

to neighbor wells, and introduces dissipation. Imaginary
frequency modes (downward curvature of potential) are observ-

perhaps the simplest INM result and demonstrates both the utility able during barrier crossing only, and thigg(w)Uis a source

of, and challenges to be met in, the application of solid state
thinking to liquids. The stable INM density of states vanishes
at zero frequency, whilé(w=0) equals the self-diffusion
constantD, the integral ofC(t). Thus, the diffusion constant

is predicted to vanish; furthermore, discarding thednmodes
and correspondingly increasing the are&gfw)Cis unjustified.
These difficulties become less important with decreasing
temperature, sinc® — 0 and the “fraction of unstable modes”,
denotedf,, decreases. When bolhandf, are small, eq 1.2a
can be very accurafeas seen in Figure 2.

The significance of the imaginary frequency modes is less
clear than that of the stable modes. LaViolette and Stilliger,
and Cotterill and Masdehsuggested that the number of unstable
modes might correlate with fluidity, and indedal may be

of information about barrier crossing. In fdgt,(w)Ocontains
enough information to allow a calculati®nof the barrier
hopping rate and the distribution of barriers to diffusiomyE).
Thus, in a neat closed loop, the unstable modes yield the
damping of the stable modes. Of course the idea that diffusion
requires barrier crossing has a long history of distinguished
practitioners, notably Eyringf, and is the obvious explanation
for exponentialT-dependence ob(T). While [p(w)Uis most
often obtained numerically, analytic theories have been given
by Stratt et al® and by Wu and Loring?

It is an oversimplification to state that all Im- modes
correspond to barriers. We propoéetthe existence of a cutoff
wc such that folw| < w. the modes were unrelated to barrier
crossing. Bembenek and Laffdverified the existence of a

calculated from the imaginary frequency modes. The decreasecutoff by calculating the one-dimensional potential energy

in amplitude of(p,(w)Owith decreasindl shown in Figure 1
mirrors a decreasing fluidity. Figure 3 is a test of the INM
formuld®

D(T) = constld [T, 1.3)
in LJ atP = 10 kbar, wheréd (s the averaged unstable mode

frequency. A related formutais of comparable accuracy in
supercooled C§ where, diffusion being a translational phe-

profiles U(q). They showed that fotw| < w. the U(q) are
“shoulder (SH) potentials*single-well potentials with inflection
points on the shouldefwhile for |w| > w. double-well (DW)
barrier crossing profiles (plus SH contributions) appear. The
cutoff may also be obtainédwith analytical methods. We
recently found that it is symmetric; fap > w;, Rew modes
are single-well (SW) harmonic oscillators, but tor< w. small

SH contributions appear. Thhsrmoniclm and Re frequency
modes vanish and are depleted, respectivelyjdor< w., and

nomenon, the fraction of translational unstable modes must bethis has very important consequences.

used.

To go beyond solid state formulas and qualitative correlations,
a physical picture is essential. Goldsf€irhas formulated
supercooled liquid dynamics in terms of the topology, or
landscapeof the many-body potential surface, a viewpoint that
is superbly attuned to INM. The liquid is described by
interrupted harmonic dynamics, with periods of harmonic
oscillation near the local minima (the wehsjthe liquid or
glassy region has, unlike the portion associated with the

For times that are short comparedrtdarrier crossing may
be ignored and time correlation functions calculated via textbook
use of the stable INM. Unstable INM may also be employed
carefully, although their time dependence is caghwhich
diverges at long times. From the eigenvectors it is possible to
associate specific dynamical features with specific atomic or
molecular motions. This is the basis of one of the two principal
directions, broadly speaking, of INM theory and has been the
subject of two reviews, by Strdttand by Stratt and Maron-



Feature Article J. Phys. Chem. A, Vol. 101, No. 16, 1992923

celli.2*> Many current experiments focus on the ultrafast time _
scale, so such theories are directly applicable. Agaimgreases < Tf do [[pdw)tEosEy) + [p,(w)cosher)] - (2.5)

as T decreases and the “short time” regime expands in | jiquids d(,;t) is more complicated, and the dynamics of
supercooled liquids. Equation 1.2 is an elementary formula of vo(t) are not described by cos or cosh. Nevertheless we have
this type. o L . , an expression where the harmonic limit is evident and where
The second principal direction is the construction of time |iqyid-like behavior enters through INM variables. The har-
correlation functions accurate at all times, following eq 1.4, with  1onic approximation is a good one in liquids at short times,
wn obtained fronfpy(w)Ll Integration leads to INM expressions  gnd the time expansion of eq 2.5 yigi¥ the exact? andt*
for transport coefficients, e.g. the self-diffusion constant. This orms.
approach allows a new explanati®#**of the Arrhenius and Cho and Stratf showed how to apply the above ideas to
stronger-than-Arrheniu$-dependence characteristic of strong any generalized velocity variableAdit which is the time
and fragile supercooled liquids. Here the point is not that an gerjvative of a generalized positioh (even function of the
accurate short time approximation is available frgifw)LJbut  ye|ocities). For a configuration close to that at which the INM
that[py(w)Cprovides a sufficiently rich description of transport  \yare found,A is expanded

via barrier crossing to yield the long time decdythe cutoff
At = A(0) +  (dAVdq,,) da,

wc is properly included Equations 1.3 and 1.4 belong to this
where dj, is (eq 2.1)q, with ri(t) replaced byi(t) — ri(0). The

(2.6)
class of INM result.
reference to the expansion point drops out of the time derivative

2. INM Theory of Time Correlation Functions

2a. General Considerations and SuggestionsWe seek a
theory of time correlation functions in which controlled,
physically motivated approximations are generated in terms of
the properties of the INM. U|t|mate|y one would hope for a and one can write down the correlation function, having
formally exact starting point. Two steps are indicated: first, introduced the derivatives of the physical variable with respect
an arbitrary dynamical variable must be expressed in terms ofto the INM.

INM variables; second, the dynamics of those variables must A fundamental dynamical quantity, the time derivative of the

be found. The INM themselves are well-defined dynamica| force on a particle, has a SpeCiaI relation to the INM. From the

variables. The eigenvectors,(;t) and the eigenvalues,(t) harmonic expansion of the potential

are functions, albeit unusually complicated ones, of the positions ]

ri(t); Roman index denotes both particle number and Cartesian Fi(t) — F(0)= Z(I,OL;O) €,(0) [a,(t) — g,(0)] (2.8)
Settingt = dt, ot — 0 and dividing both sides byt yields

dA)/dt = 5 (dAIdg,) o, 2.7)

direction, Greek index denotes normal mode, and summation

over repeated indices is implied. Natural INM position and
velocity variables in atomic liquids adgg,, v}

qa(t) = Z((I,Lt) ri(t) Ua(t) = Z((l,ht) Ui(t)

and are related to familiar Fourier collective variables by the
replacementd,i;t) — exp(k-r;). If possible we would like to
avoid dealing withgq(t), with its dependence on the absolute

2.1)

atomic positions which need not be small. More generally the

INM are?? linear combinations of mass-weighted coordinates,

but the mass can be removed from many manipulations by

incorporating it into the definition of reduced units.

Expression of the usual quantities as INM is straightforward
for variables which are generalized velocities (odd functions of
the velocity). Consider first the velocity correlation function.
INM expansion ofyi(t) in terms of thew,(t) yields

C(H) = (1) »0)0= ) i) (15:0) v,() 2,00 (2.2)

Summing oveii and dividing by 3 eliminates reference to a
particular particle,

CO = 3 D@D o) 1(O)0
dl i) = (WA (.oct) (6:0)

At any instant the i(o;t) obey the usual ortho-normality
relations,  (i,o;t) (i,8;t) = dap. In @ harmonic crystal these
coefficients are time-independentpgf;t) reduces to (1M8)dqg,
C(t) = (1/3N)Y @o(t) vo(0)T and [@y(t) va(0)d= T cos@qt).
Were we to make all the harmonic approximations iigaid,
assume that Re- results can be applied to lm-by simply
substitutingw — iw, and replace the sums over modes by
integrals over the density of states, we would obtain

2.3)

(2.4)

dF,/dt = Z(i,a;t) €4 Vs (2.9)

The diffusion constant may be calculated from the integral
of the d~/dt correlation function as well as from the velocity
correlation. That observation has b&kthe basis of mode-
coupling theories of tagged particle motion in liquid§/dt is
in some ways a better starting point. Equation 2.9 easily yields
an INM expression for the Fldt correlation. Thus we have
expressed two important correlation functions using INM
variables.

For generalized positions Cho and Sf&suggested that the
time correlation function be expressed as the double time integral
of the dA/dt correlation, where A/dt is a velocity, and that a
purely harmonic INM approximation be applied té/dt; thus

DA OAQ)T= [OA) T [ do (Tlw?)p (w)] +
S do (Tlo?) 3" (@) coset) (2.10)

wheredA = A — [Aland Imw modes may be included for
short times with cost) = cosh@t). The weighted INM
density of states ¥

[3"(0) 0= By (dAVdg,)” 8(w — wy)0

Equation 2.10 has been extensively empléyédlin the
interpretation of solvation experiments, whéres the solvation
energy. It is analogous to eq 2.5 in that it assumes harmonic
dynamics and thus has not yet dealt with some of the
complications involved in an INM theory of liquids. Among
other things, it does not decay to zero at long time. Nonetheless
eq 2.10 is, like eq 2.5, accurate at short time. The solvation
studies by Stratt, Maroncelli, and Ladanyi demons#ee?8

(2.11)
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the capability of INM, through the eigenvectors, to isolate the
detailed molecular motions corresponding to particular dynami-
cal features. If the variabla is a short ranged function of its
argument,[pA(w)0is well-described by a particularly simple
analytic approximatiog?

We propose?f to deal directly with coordinate correlation
functions using eq 2.6 and the physical picture of the system
hopping among the many-body potential wells. Harmonic
dynamics are assumed to hold while the system is in a given
well, and the correlation function is calculated for that well
(denoted by brackets)

[0A(t) 6A0)] = 0A,” + [dw (TIw?) p, () coset)
(2.12)

where the harmonic resulfd,,20= T/w?, has been employed.
O0Ay = Ay — [AyCandA,, is the average value in the well. The
notable feature of eq 2.12 is the consta,?; the harmonic
fluctuations are about a nonzero value in the well, and harmonic
dynamics will not relax this part &&. However, hopping among
the wells will change and randomizg,, as well as relaxing
the harmonic oscillations. Averaging over the ensemble of wells
and introducing hopping,

BA(t) OA(0)IOA)’ =
[(1 - F) + Fy [ do (Tlo?) 3" (w)Ceoset)/

(fdo (Tlo®) [pY(w)D] exp(-tizy) (2.13)

where theharmonic fractioris Fy = fdw (T/w?) [pA(w)I{0A)0
Equation 2.13 is identical to the Ch&tratt equation except,
with damping added, it decays to zero at long time. Hopping
may relax different dynamical variables with different rateg,(
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Figure 4. Anisotropic polarizability INM density of states vs (ps™?)

for CS at 165 K, decomposed into distinct physical components.
Translation parallel to the molecular axis (solid line), perpendicular
translation (heavy dashes), and rotations (light dashes) are represented.
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anisotropic and isotropi@™(w)Cyields a frequency-independent
depolarization ratio of 0.69, in agreement with Simon’s vélue
of 0.7+ 1. INM polarizability calculations on acetonitrile have
been performed by Ladanyi and Klein, with an alternative
mode decomposition.

The question of how to obtain INM dynamics remains. Time
correlation functions of the INM variables could be obtained
via approximations to an exact starting point, or via intuitive
modeling. We will now briefly suggest how one might go about
rewriting the laws of motion so that INM approximations could
be systematically constructed, and we will then cover modeling
in more detail.

Mori's formalisn¥® is exact for time correlation functions of

and of course mode and-independent exponential damping 4, arbitrary set of dynamical variables, and is one of the
is only a first approximation. While this heuristic derivationis - rnerstones of dynamical theory in liquids. A microscopic
not identical to that of Cho and Stratt, it may explain why €q qeriyation of hydrodynamics is obtained by choosing the
2.10 does not decay at long time; harmonic dynamics in the ,mper, momentum, and energy densities as the set of variables;
wells cannot, and should not, relax that part of the fluctuations j js ot unreasonable that use of the INM variables would also
due to barrier crossing or structural relaxation. In our VIeW |aad to useful results. A more direct route is possible, based
bar_rier crossin_g corresp_ono_ls to the sl(m’/_ process of liquids, on the expression offéldt by INM. The time derivative ofy,

while harmonic dynamics in the wells is a fagi™"process.  _ (g, /df) contains @/dt and first and second derivatives of
Thus INM allows® a new perspective on the phenomenon of ; ;- Eliminating di/dt with eq 2.9 yields closed coupled

op3 relaxation. o equations for,(t) anday(t) containing the INM quantities as
We have used eq 2.13 to calculate the polarizability correla- time-dependent coefficients

tion function3® and Rayleigh/Raman scatterifign CS,. The
relevant density of states is weighted by the squares of the
derivatives @1®/dq and d1©)/dq for anisotropic and isotropic
scattering, respectivelyr, is taken to be the second-rank

du, (t)/dt = a(t) (2.14)

rotational diffusion time, and we used the normalizgd(w)0
The nonharmonic contribution provides a new interpretation of
the narrow line in the anisotropic Rayleigh spectrum. Agree-
ment with simulation is excellent, with separate fast and slow
processes clearly visible at the freezing point, 165 K. The
simulation includes molecular vibrations, which are in reality
guantum mechanical; thus Wk,and others? have given a
method for quantum correction of classical INM. In addition

da, (t)/dt = Z[eﬂ(t) Oop + Z(dz(a,i;t)/dtz)(i,ﬂ;t) —
2y c(oyi) oy B0 vgt) + 2 o Bit) ay(t) (2.15)

wherec(o,5;t) = Y (d(o,i;t)/db)(i,5;1).

In each eigenanalysis, the modes are ordered byly, and
it is not immediately obvious which mode at a previous time is
the “ancestor” of a particular contemporary mode. Adiabatic
INM (AINM) may be obtained’ by identifying a mode at time

we decompose the densities of states into contributions fromt as the descendant of the modet at At, for At — 0, with
translations parallel and perpendicular to the molecular axis, which it has the maximum overlap. The frequencies of the
and rotations; this is shown for the anisotrogit(w)Cin Figure AINM do not cross3” so modes can simply be tracked by their
4. The trangtpiece, away fronw = 0 resembles the spectrum ordering inw. AINM may serve as a time-dependent “basis
in simple liquids, an exponential decay, while the rotations set”, but note that the existence of an adiabatic basis does not
appear to have more of a distinct peak (all partd@f(w)0 imply adiabatic dynamics. Energy put into a single AINM at
vanish atw = 0). Interestingly, one empirical # to t = 0 will find its way into other AINM, with mixing particularly
experimental data consists of a teenexp(—w/wo) plus an pronounced at the avoided crossings (AX). Alternate time-
antisymmetrized Gaussian peaked at a finite INM may dependent INM are diabatic INM (DINM) which do cross at
provide a physical basis for the fit. Comparison of the the AX of the AINM. Mode following will have to be
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incorporated into any INM formalism. Solving these equations contribution. Similarly, in eq 2.17, decay of(fw) can cause
is not a simple matter; they are nothing but a rewriting of the unstable contribution to be well-behaved. The case for
Newton’s equations. However they have a transparent harmonicinclusion of unstable modes is compelling becatisg 2.17
oscillator limit when all the INM coefficients are time- then yields the correct time expansionttdaf the leading term
independent. It should be possible to find perturbative solutions in the time expansion of tiv) is t® or higher. This is an
when the time derivatives are small. Equations 2.14 and 2.15unusually flat function at short time, and it will be very
could form the beginning of systematic INM theory. interesting to see how df) finally turns out. Recall also that
2b. Modeling of Correlation Functions: The Velocity in eq 2.13 we suggested exponential damping for a coordinate
Correlation. Consideration of the velocity correlation function  correlation function, but only as a first approximation. The
illustrates the diversity of ideas arising from a very simple INM undamped eq 2.13 is exact % so the damping must have a
exercise. Equation 2.3 suggests that the time-dependent eigenleading term ot*. Apparently the damping functions describe
vectors are the source of the damping of the INM, so we write purely slow processes; if damping is due to rotation, it is the
long time part of rotation, not fast librations.
C(t) = Tzd(t;a) C(ta) ~ Analytical methods may be used to obtain the damping. In
S ) ref 15 we usedp,(w)[to calculate am-independent averaged
TZ[(l/SN)Z[ﬂl,(l,t)(l,(l,O)[]] Cto) (2.16) exponential dg?a(y r)ategh, for the stable moges. That rategwas
) o o an average over barriers with all different frequencies. If a
whereld(t) vo(0)0= TQ(t,o).  The first equality is oudefinition barrier with a giverw connects to a stable coordinate with about
of a mode-dependent damping factor,d]. The secondisan  the samay in the adjoining welk® the barriers at» could be
approximation obtained from eq 2.2 by factorizing the average, \;sed to damp the stable modeswafor w-dependent damping.
dropping thea. = 5 terms and averaging over the equivalent A gecay time for the unstable modes should be the lifetime,

atoms; da) is then given by the eigenvector correlation f the system on a barrier. In the simplest one-dimensional
function. The velocity correlatiofi(t) may be constructed from e /7, = PyP, = fJf, = (1 — fu)/f,, wherePs and P, are

the velocity correlation functions of individual modes and & he probabilities of being in a well and on a barrier. Vijay-

function describing the lifetime of mode, d(t;a); the sum adamodar and Nitzan propogédn w-dependent version
contains the imaginary frequency modes.

It is appealing that the mode lifetime be given by the exppE()) ~ 1, (w)/t(w) = py(w)Ih(w)D  (2.18)
eigenvector correlation. ¥ modes are randomized when the
system hops to a neighbor potential well, it makes sense thatand obtained good results for diffusion in normal liquid, unit
the eigenvectors in the new well are decorrelated from the density LJ with the Zwanzig theory. It will not be difficft
original vectors. However, one must be very careful ap- to treat multidimensional barriers. An exponential decay is not
proximating eq 2.2. At AX the AINM exchange identity, desirable, but these are the first steps to a theory Hé}i(
leading to a rapid decay of the eigenvector correlation function. Fourkas et al. have propogéa novelw-dependent lifetime in
The modes have simply been relabeled &(t)ihas not decayed, g quantum INM interpretation of their RIKES experiments.
but this is not handled properly in the diagonal/factorization  The INM, while found with a harmonic analysis, may not

approximation. Thus the approximate eq 2.16 is expected to display harmonic dynamics. We consider two manifestations
be innacurate for AINM, although it will be worth trying with  of this possibility. Firstlyo2 for |w| < wc the Imw modes

the DINM which do cross and lack the peculiar randomization are “shoulder modes”, and the Remodes have a shoulder
at avoided crossings of the AINM. Knowledge of the time contribution; it is unlikely that the harmonic time dependences,
evolution of the eigenvectors, over and above their relevance cos or cosh, apply. For a harmonic INM theory it is plau-
to eq 2.16, will help develop and verify the underlying INM  sjb|e!525 to simply put a lower cutoff on the integrals in eq
ideas of harmonic oscillation, hopping, and randomization. 217, or better, u2 densities of SW and DW modes.

- Were we to (1) replace t¢) with exp(-t/z), a mode- We will then be calculating a particular INKontributionto
independent decay, (2) discard the imaginary frequencies, anda time correlation function; what is the remainder? The
(3) assume thdi(t;o) has the simple harmonic form, cag(t=0) dynamics of SH modes are bound up with the question of the

t), we would have something very close to eq 1.4. Extensions relation of INM to hydrodynamics, which governs the largest
of the theory are possible in all three directions. Equation 2.16 |ength, longest time, decay in liquids. Hydrodynamic modes
explicitly contains mode-dependent damping as well as a might be expected to appear as damped, delocalized “phonons”
prescription for inclusion of the imaginary frequency modes. in INM calculations. INM phonons have not been found,

Furthermore, C(t;a) need not equal cosg(t=0)t) or although there existd some evidence of large scale INM
coshfq(t=0)t). The frequency of a mode may wander intime; cooperativity. It is possible, then, that the SW and DW INM
such wandering causes motional narrowifig well-known are local modes in liquids, which must be supplemented by the
phenomenon in vibrational spectroscopy, which has not previ- hydrodynamic modes at| < w. for a complete description.
ously been incorporated into intermolecular dynamics. We have pursuéd?4 Bucheneau’s suggestitithat the INM

We first consider the case of fixed, and examine what  could be the liquid version of the “soft potential modes” USed
can be done with points (1) and (2); thus, in the theory of glasses. The SH modes may be the INM

connection to hydrodynamics. Boihy(w)Candlpy(w)Care~w

cH=T [fdcu [p(w){t;w) coset) + at low w, which we have arguétiis a possible consequence of

long ranged disorder. It could also be said that the linear
fda) [P (w)Od(t;w) cosht)] (2.17) behavior is a consequence of the SH modes, thus linking them
to long ranged excitations. Completing the SW/DW description
The presence of imaginary frequency modes is significant for with hydrodynamics could yield an INM velocity correlation
the development of INM theory. Because the cosh grows with the correct “long time tails**
exponentially at long times, direct contributions of tonmodes INM time correlation functions are very sensitive to a lower
have been limited to short time so far, the exception being a cutoff. The Boson pedR*8is a low-w peak seen in light and
calculatio® of friction where a short lifetime “tames” their  neutron scattering in supercooled liquids. At times before
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Figure 5. Mean square displacement®(t)d0vs t (LJ units) at
intermediate time for supercooled LJ liquid just above the glass
transition with no cutoff (solid line)p. = 2 (heavy dashes), ang. =

5 (light dashes).

diffusion sets in, the mean square displacemen&(t)(] rises

Keyes

sion, characterized by the correlation function of the fluctuating
frequency. Combination of egs 2.19 and 2.16 yields a theory
of the velocity correlation including Inm» modesw-dependent
damping, additional damping from dephasing, and motional
narrowing. We hope that it serves as a framework for new
approaches to dynamics in liquids.

2c. Internal Degrees of Freedom. Molecular vibrations
are often well-described by the harmonic approximation. In
liquids coupling of these modes to the bath is of the essence,
and a harmonic INM description of the bath is ideally suited
for coupling to harmonic intramolecular modes. The bath has
been successfully modeled>&$Brownian oscillators”; using
the INM to describe the Brownian oscillators could be a valuable
synthesis. While classical theory and simulation may always
be compared, real molecular vibrations are quantum mechanical.
Fortunately, in another INM advantage, harmonic systems are
the easiest to quantum correct.

Schvaneveldt and Lorifghave used the Wl oring theory®
to calculate the Fourier transform of the bond velocity correla-
tion function,Cy(w), which is related to the absorption spectrum,
for a diatomic in various solvents. They obtain an INM

from zero to a plateau. The strength of the Boson peak hasgypression for the bond frictiofi(w). To a first approximation

been relate*6to the amplitude of an initial overshoot of the
plateau byidx?(t)l1 Figure 5 shows$dx?(t)for unit density LJ

at the glass transition as a function of cutoff. For no cutoff
there is no overshoot; fas. = 5, ouft® rough estimate, there is

the line width equald'(wv)/2, wherewy is the vibrational
frequency. The friction is the Fourier transform of the correla-
tion function of the random force on the bond and has been
calculate® by Stratt et al. with INM for a rigid bond and by

a marked overshoot. We are not saying that LJ has a Bosong.pyaneveldt and Loring.

peak, only demonstrating the role of a cutoiiVe predict that
the strength of the Boson peak correlates with Note also
that INM correlation functions of coordinates are written as
frequency integrals with integrands containing the fadiar?,

the harmonic formula fofq,?0] Sincelp(w)0~ w, ® — 0, a
badly behaved integrand can result, a difficulty which is
removed by a cutoff. It will also be valuable to obtain the true
behavior ofd,2Cfor nonharmonic INM.

Because we have alreddy#*25correlated thé-dependence
of relaxation times withw., structural relaxation and tffe
“mesoscopic” (intermediate time) dynamics of supercoole
liquids are implicitly interrelated by INM theory in the Boson
peak calculation. Such relatigfis*® are a topic of current
interest. Sokolof? outlines a view of supercooled dynamics
in which there are two contributions to mesoscopic dynamics,
“an anharmonic relaxation-like contribution which is tradition-
ally ascribed to motion in double wells” and “harmonic quasi-
local vibrational excitations, which show up as the low-
frequency so-called Boson peak”; the mesoscopic dynamics,
remarkably, correlates with structural relaxation 10 orders of
magnitude slower. The excitations invoked for mesoscopic
dynamics are explicitly realized as the DW and SW INM,
respectively, and the correlation with structural relaxation is seen
in the INM calculation ofwy, from their densities of states.

d

INM vibrational lines can b&-51-53proader than the true lines.
This, we believe, is a consequence of the absence of motional
narrowing in existing theories. INM automatically includes
inhomogeneous broadening, so competing effects must be
included also. Equation 2.19 contains motional narrowing and
is a promising route to this end. It is also desirable to see how
the competition between motional narrowing and inhomoge-
neous broadening appears from the viewpoint of the friction.
The friction determines the entire line shape, so every physical
effect must have its counterpart therein.

Equation 2.13 is applicable to the time-dependent friction,
with “A” = F*, the random force on the bond; random means
projected orthogonal to the bond coordinate. Considering a
single molecule in solution, evaluation @ (w)C] the “random
force density of states”, is all that is required. For a rigid bond,
F = F*, the only modes are bath modes, and good results are
obtained? for the “intermolecular” friction.

A vibrating diatomic, e.g. also has a “system mode”, denoted
v, which is the bond stretching in an isolated molecule but which
includes coupling to the bath in the liquid. The bond coordinate
is not an INM in the liquid; it approaches an INM when the
vibrational frequencywy is much larger than the highest
intermolecular frequency (weak coupling), and it is a strongly

A second source of nonharmonic dynamics is time-dependentcoupled linear combination of several INM whex lies within

frequencies. Zwanzig's pictur&s of harmonic oscillators with
fixed frequencies in one well becoming randomized by hopping.
But if the frequencies fluctuate in a single well, the problem
becomes analogous to calculati#hsf spectral lines, where
fluctuating frequencies cause motional narrowing and relaxation
via dynamic dephasing. For time-dependent frequencies

C(t;a) = [Gos[f dt' Re(w,(t"))] cosh[fdt’ Im(w,(t))]0
(2.19)
in contrast to cosfut) or coshf,t). Equation 2.19 is the

starting point for the Kub® theory of spectral line shapes. It
may be evaluated via simulation,*dby a cummulant expan-

the continuum of intermolecular modes (strong coupling). The
system mode survives the projection orthogonal to the bond in
F* to the extent that it is coupled to the bath. The orthogonality
of the INM make taking the projection particularly easy, and
we find > for a given configuration in the weak coupling limit,

Fr=-0,"y (00) g, — »,%eq, + F*

(2.20)
where p,a) is shorthand for the projection of bath modeon

the bond,e = [(b,v)™2 — 1] is®* a small coupling parameter,
andF2 is the anharmonic part of the intramolecular potential.
If the bond is identical to the system mode (zero coupling),
(blv) = 1 ande = 0. The anharmonic force appears because
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the Mori projection removes only the harmonic intramolecular
contribution.

The first term on the right hand side of eq 2.20 contains
energy relaxation from harmonic coupling to the bath; it is

J. Phys. Chem. A, Vol. 101, No. 16, 199927

whereny(w) is the configuration-space volume weighted density
of barriers andG(w,T) = [E@xp(pE){w) is the averaged
Boltzmann factorat w. The parameters are, number of
coordinates with downward curvature at a barrier ipumber

restricted to intermolecular frequencies and makes essentiallyof atoms in a cooperativeé region (localization of INM);s,

no contribution to the line width i@y is outside the continuum.

number of barriers connected to a minimum, number of

The second term might give inhomogeneous broadening. Sinceminima connected to a barrier. In shdg,(w,T)depends upon

it is proportional to the system mode its contributiol{@) is
always centered aroung, and it always contributes &(wv).

the topology-via ny(w) and the parametersand upon the
probability that the system has the thermal energy to visit a

The anharmonic force broadens the line because a bond withbarrier atw, governed byG(w,T). The averaged Boltzmann

an anharmonic potential samples a distributiomof An INM

factor is the most interesting part g, (w,T)Cand is our INM

description of an anharmonic force would require higher order “window” on the potential energy landscape.

expansions in theg. There is, however, a good argument for
ignoring F2 altogether. A quantum anharmonic oscillator still

Consider the averaged hopping ratg, Given an expression,
e.g. transition state theory (TST), for the rate of crossing a

has just a single ground state and a single first excited state. Ifspecific barrier, it is necessary to perform an average over all

T is low enough that only the 8~ 1 transition is observed,

possible escape routes from a well. If this average is organized

there exists a single quantum frequency. The classical distribu-by contributions from barriers with differert, an w-integral

tion of frequencies, and the corresponding presencE2dh
F*, may®® be regarded as classical artifacts.

Now consider damping of the INM friction time correlation
function. Damping will broaden the system mode peaK(i@)
and reduce its amplitude at ~ wy, reducing the line width.

results whose integrand contains the same quantities as those
appearing irS(w,T). Thed = 1 TST rate iskrst = 1/(27) (w/

ws) exp(—pE), wherews is the frequency at the minimum. The
exponential inkyst, averaged over the distribution of heights

of barriers withw, is G(w,T). Extending TST tad > 1 and

Thus, the undamped system mode represents the full inhomo-completing the average we obt#in
geneous broadening, and damping could introduce the compet-

ing effect of motional narrowing. Damping of the bath modes
will also change the energy relaxation contributiod {@). In
sum, the competing physical contributions to vibrational relax-
ation are visible in the INM friction.

w, = m(27) [do o S,T) =
m{(/32) — f] 7" [do wip,(w,T)O(2.25)

More generally, time-dependent perturbation theory may be everything in eq 2.25 except the parametsis available from

set up with INM ideas. The Hamiltonian for a solute is written

Cou(w, ) It may be possible, as mentioned earlier, to relate

as a sum of a molecular part, which contains the kinetic energy e integrand of eq 2.25 to as-dependent decay rate, leading

operator(s), and a solutsolvent interactionH = H™! +
V(R{r}), whereR denotes the solute internal coordinate(s) and
{r} the solvent coordinates. The interactis expanded about
the instantaneous configuration

V(R{r}) = VR{r}) + 5 (V(R{r})dq,) a,()  (2.21)

and we writeH? = H™' + V(R{r%), H'(t) = S (oV(R{r})/
30a)° gu(t). If HM! describes a two-level system, we can use
perturbation theory for the transition ra®eof solvent-induced
level hopping between the eigenstatesHSfin a given well,
average the quantum harmonic (brackefgorrelations, and
finally take a configuration average (angled brackets)

R=A"p"Nw,9) [l(w190

where[p(%(w)0is a quantum mechanical weighted density of
states with the contribution of each modeveighted by

(2.22)

W,(10) = [1|(aV(R{r})/3a)°|ocd (2.23)
and we use the Dirac notation for the initidD¥) and final
(11>) states. Note thatio is within the average; the level
spacing depends on the configuration sik€eontainsV(R{r%).

to better approximations to time correlation functions. One
signature of supercooled liquid$$°the stretched exponential
decay of correlation function&(t) = exp[—(t/7)?], which is
thought® to arise from a distribution of decay times. If that
distribution corresponds to the distribution of barrier curvatures,
INM could yield a theory of the stretched exponential.

We have determiné#l the w,T-dependence ofp,(w,T)Tin
unit density supercooled LJ for 1.25 T > 0.42 (meltingTy
~ 1.8)

(0, T)= a(T) w exp(—cao’/T?) (2.26)

andc = 0.000 20. The exponential in eq 2.26 is, within a
multiplicative constant, the averaged Boltzmann factor. Using
egs 1.4, 2.25, and 2.26 and taking the— O limit, appropriate
for deeply supercooled systems, yields

D/T = 0.0068nT*? (2.27)

For the simplest case af= 1 barriersm = 2, the resultingp

D(T) is shown, along with simulation data, in Figure 6. We
have, with no adjustable parameters, a quantitatively accurate
theory forD in supercooled liquids, a theory of a completely

Equations 2.22 and 2.23 are applicable to nonadiabatic stateney type.

hopping of electrons in liquid®, or might be applied directly
to vibrational relaxation.
2d. Unstable Modes, Barrier Crossing, and Relaxation.

One of the most important issues in supercooled liquids
is10.17:45.48.66he microscopic origin of the ubiquitous “activated”
exponential temperature-dependence of transport coefficients

The Imw density of states contains information about the and relaxation times. Liquids whose exponerifilependence
barriers to diffusion which has formerly been unaccessible. A fg|lows an Arrhenius exp{E/T) law all the way down to the

simple modé¥ yields

(b0 D= (032 SN [1+ [doSon] ™
So,T) = (§m) ny(w) G(w,T)

(2.24a)
(2.24b)

glass transition afg have been namétt‘strong” liquids, while
liquids which show a transition from Arrhenius to stronder
dependence are “fragile” We have just calculaté(8) which

is power law, no activated behavior at all. However the power
law has arisen from am-integral of a density of states which,
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at a givenw, has one of the principal stronger-than-Arrhenius
forms, the ZwanzigrBassle?! (ZB) exp(—E3/T9), with E(w) =
Cl/2 602_

This observation leads to an INM explanation of activated
behavior. Relaxation arises as a sum of contributions from a
distribution of barriers, organized according4o Nothing can
be understooavithout consideration of the distribution of barrier
heights; fluctuations are large, and replactgvith [ECwill
lead toqualitatizely incorrect results. A single barrier gives

Arrhenius dependence, but such behavior integrated over a

smooth distribution of barrier heights easily collapses to a power
law. What is required in the distribution so that activated
behavior survives? A sharply peaked distribution would suffice,
but more likely, we think, is one with bower cutoff-an Emin
below which the distribution of barriers falls off sharply. Since
E ~ w?, the energy and frequency cutoffs are related. Equation
2.25 should contain the lower frequency cutoff, including only
DW modes and leading to the expresdfon
D/T = 0.0068nT*?exp(—cw /T (2.28)

i.e. INM-derived ZB behavior. At the lowest temperatures in
Figure 6 the data fall below the no-cutoff theory; eq 2.28 fits
those points withw, = 4.54. Physically, a lower cutoff is
required because otherwise, at dnyhere exist enough barriers
with E < T which can be crossed without activation. Activation
energies in Arrhenius or ZB expressions are representative of
Emin, NOt of the average barrier energy.

It has become apparéhrt?that [p,(w,T)Cchanges from ZB
to an Arrhenius expfc' w?T) law at a crossover temperature
Tr > T, and repetition of the calculation which led to eq 2.28
with a more complete form ofpy(w,T)Omust yield a self-
diffusion constant with a crossover. The consequent INM-based
description of strong and fragile liquids is, we think, one of the
most exciting recent developments. The physically distinct
contributions tolpy(w,T)Oare neatly expressétin the form,
suitable for fitting a broad temperature range,

~In(fo (@, T)w) = &y(T) + X.(w) + xG(w,T)

wherex.(w) determinesy(w) and—xG is the logarithm of the
averaged Boltzmann factor. In unit density LJ a very good fit
for 10 > T > 0.42 is obtained withkG(w,T) = (Q)%(M, where

Q is the scaled frequencf?2 = a,w/TY¥2 anda, is a constant;
ag(T) goes from>4 at the glass transition to 2 &t> Tg. The
resulting expression fdD is

(2.29)

D(T) =~ exp—[(Tmin/T)a3m/2] (activated behavior only)
(2.30)

whereTmin = a2 w?, a microscopically motivated INM formula
capable of describing strong or fragile liquids.

The parameters, and their significance, are as follows. If
energy barrier fluctuations are negligibleG(w,T)
exp(—pE()D, and withE ~ w? we conclude that Arrhenius
corresponds to small fluctuations. Physically, Tor> Tg the
potential surface isiniformly rough(small fluctuations) while
for T < Tg it is nonuniformly rough, in accord with the ideas
of Stillinger®® A second crossover temperatuf@,n, arises
through the requiremeni(;n/T) = 1 for the visibility of any
exponentialT-dependencé362 in our units Tmin = Emin, the
energy at which the available barriers begin to vanish. For
> Tmin, D(T) is power law. Mode-coupling thed®predicts a
crossover from power law to exponentiddependence at a
temperaturely, but the physical pictures seem different; the
viscosity diverges aly in early versions of mode coupling, while
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Figure 7. Schematic classification af-dependent dynamics showing
unit density LJ, normal OTP, and a generic strong liquid.

our crossover is not associated with a “dynamic critical point”.
Relaxation vsT in a supercooled liquid may be represented as
a straight line in the {x/T), (Tmi/T) plane, terminating at the
glass transition. The plane is divided into four regions by the
two crossover conditions; Figure 7 shéwanit density LJ,P
= 1 atmo-terphenyl (OTP) and a generic strong liquid. Strength
(inverse fragility) is seen to follow from a largBnin; thus we
predict that strong liquids have large. Sokolov finds that
a strong liquid has a relatively large contribution of harmonic
vs double-well excitations. Another INM indicator of strength
is then the ratioS = fs/fan", where tr indicates translation.
Nondirectional, van der Waals bonding is expetté¢alcorrelate
with fragility, so LJ should be the ultimate fragile liquid. How
can this be so for a substance with a power [2{(¥) in almost
the entire supercooled range? Figure 7 shows that LJ has an
enormous range of nonuniform roughness, but a small range of
exponentiall-dependence due to a smallin. The fundamental
connection is between the intermolecular interactions and the
landscape, but the landscape does not manifest itsBIf T if
T> Tmin-

INM provides routes to the distribution of energy barriers,
g(E), from Lpy(w,T)I The inverse Laplace transform &{w,T)
with respect t@ should giveg(E,w), the distribution for a given
w, but the calculation is problematic in supercooled liquids
because the inverse transform of a Gaussian (eq 2.26) does not
exist. The integral equatiots!® for g(E) have not yet been
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applied recognizing the importance of the cutoff, and it will be description will not be terribly different from transition state
interesting to see hog(E) behaves at lovE when calculated theory.” In summarizing current research in INM theory, one
from the DW densit§P of states. Recent discussiéhsf the would not go too far wrong by saying that we have, with
breakdown of the Stoke<Einstein law just abov8g invoke contemporary analytic and simulation techniques in hand, been
fluctuations in barrier heights, associated with spatial hetero- moving in the directions indicated by the quotations.

geneity, as the mechanism.®3the shear viscosity depends
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